
TBD 1

Store, Carry and Forward Networks: Defining the
Problem, Requirements and Expectations

William D. Ivancic Member, IEEE, Wesley Eddy, Joseph Ishac, Alan Hylton and Dennis Iannicca

Abstract—This document provides a problem statement for
Store, Carry and Forward (SCF) network, a network consisting
of non-realtime communication between systems that are gener-
ally disconnected, which require multiple network hops between
source and destination, and which may never be fully connected
end-to-end at any given time. Included as part of this problem
statement are a number of use cases that motivate having a
standard method to communicate between such systems, as multi-
organization and multi-vendor support and interoperability is
highly desirable.

This document also describes the requirements for a SCF
protocol, and the expectations placed upon the SCF agents and
SCF applications as well as guidelines and requirements for
testing SCF systems and protocols.

Index Terms—Network Architectures, Protocols, Store and
Forward Networks

CONTENTS

I Terminology 1

II Introduction and Background 2
II-A Store and Forward Systems 2

III Generic Architecture 3

IV Operational Considerations 4

V Use Cases and Deployment Scenarios 5
V-A Data Mule 5
V-B Data Gathering 5
V-C Traveling the Beaten Path 6
V-D Rapid Disruption 6
V-E Dismounted Soldier 6
V-F Low Earth Orbiting Sensor Satellite . . 7

VI Consideration of Existing Technologies 7

VII Characteristics of Information 8

VIII Network Management 8

IX Lessons Learned Summary 8

X Security Considerations 9

W. Ivancic, J. Ishac, D. Iannicca and A. Hylton are with NASA Glenn
Research Center, Cleveland, Ohio

W. Eddy is with MTI Systems Inc.

XI Requirements and Expectations 9
XI-A Design Considerations 9
XI-B Protocol Requirements 10
XI-C Agent Requirements and Expectations . 11
XI-D Application Requirements and Expecta-

tions 13

XII Testing Store, Carry and Forward Systems and
Protocols 13

XII-A Test System 13
XII-B Test Requirements 13

XIII Conclusion 14

References 14

Biographies 14
William Ivancic 14
Wes Eddy . 15
Alan Hylton . 15
Dennis Iannicca 15
Joseph Ishac . 15

I. TERMINOLOGY

The key words “MUST”, “MUST NOT”, “REQUIRED”,
“SHALL”, “SHALL NOT”, ”SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this doc-
ument are to be interpreted as described in Request For
Comment (RFC) 2119 [1].

“What’s in a Word. Words make a difference. They affect
how we think about something. The terms chosen to describe
a concept are a crucial part of any model. The right concepts
with terms that give the wrong connotation can make a
problem much more difficult. The right terms can make it
much easier. Adopting the mindset of the terms may allow you
to see things you might not otherwise see.” - John Day [2]

In developing this document, we have intentionally avoided
some terminology used by other protocols - particularly other
store-and-forward protocols - to avoid biases and confusion
that may otherwise ensue.

Container - The application/user data to be transported over
the network as well as a checksum of that informa-
tion. Containers may include sub-containers, or be sub-
containers themselves.

Container Aggregation - The process of organizing one or
multiple containers as sub-containers inside another larger
container.

TBD 2

Container Deaggregation - The process of removing one
or more sub-containers from a larger container. This
differs from fragmentation because rather than creating
new containers, deaggregation operates on existing sub-
containers.

Container Fragmentation - The process of dividing a single
container’s contents into multiple new containers which
will need to be eventually reassembled back into the
original container before delivery to the application.

Container Reassembly - The process of recombining the
contents of multiple containers into the single container
that they were originally part of, and which needs to be
delivered to the application intact.

Delay - Propagation delay between SCF agents. Delay does
not include disconnection time.

Disruption - A relatively short period of disconnection within
an otherwise well-connected network, e.g. a loss of
connectivity in the range of seconds to perhaps minutes.

Disconnection - A relatively long period where communi-
cation between a significant proportion of hosts is not
possible for various reasons, e.g. due to the inability to
close a radio link.

Metadata - Synonymous with a Container’s Shipping Label
SCF - Store, Carry and Forward
SF - Store-and-Forward, or “store and forward” as used

generically in other literature (where the presence of
hyphenation varies)

SCF Agent - A protocol instance providing SCF services to
an upper-layer user/application

Shipping Label - Metadata describing the characteristics of
a container and its forwarding requirements

Sub-Container - A smaller container residing inside a larger
container.

Transport Capacity - As a first order approximation, the
product of link capacity and contact time.

II. INTRODUCTION AND BACKGROUND

I INTERNET technology has become pervasive and is now
present in many types of devices that end up being de-

ployed in the field for use in scenarios where they do not have
good (or any) actual Internet connectivity. The networking
stacks are used to support data transfer during episodes of
connectivity, and the applications and protocol configurations
avoid reliance on many typical infrastructure services (e.g.
Domain Name System (DNS)). For instance, these devices
may be only intermittently connected to other devices, and
are used to support data flows where the source and ultimate
destination might never be fully connected to one another at
any time. These applications operate highly asynchronously,
with non-realtime constraints on their communication. Often,
there are intermediate relaying nodes (or “agents”) that must
“carry” the data while waiting for connectivity to develop. The
means for relaying data has been highly specialized in such
systems (almost per-deployment), and varies widely, with little
code-reuse or commonality in the supporting network design.

The“problem statement” portion of this document describes
several of these scenarios generically, motivates the develop-
ment of a common solution, and describes shortcomings in

existing technologies. The problem statement is explicitly not
trying to look at the situation where a smart phone or mobile
computer is temporarily off or removed from the Internet, and
then is reattached directly to the edge of a well-connected
network. Such systems are well-suited to utilize standard
Internet protocols and are able to support realtime commu-
nications when connected. The systems and applications that
this document is concerned with are primarily operating with a
much higher level of asynchrony between the data producers,
individual relays, and eventual data consumers. We call these
“Store, Carry, and Forward” (SCF) systems to distinguish them
from typical Store and Forward (SF) systems, which generally
operate over a better-connected infrastructure. This section
clarifies the distinction between SCF and the better-understood
SF concept, which is already implemented by a number of
different networking technologies.

This document also describes the requirements for a SCF
protocol, and the expectations placed upon the SCF agents and
SCF applications as well as guidelines and requirements for
testing SCF systems and protocols.

Because so many analogies exist between SF/SCF-based
computer communications and offline non-computer-based
systems, it is useful to understand (very) early communica-
tions. Relay systems have been present even in ancient civiliza-
tions, where rulers utilized intelligence gathering via courier
services to convey and obtain information. Relays consisted of
runners, messengers, and even pigeons conveying messages
and documents. These types of relay agents had only inter-
mittent connectivity with one another and needed to hold onto
messages for possibly long amounts of time before delivering
them. Later relay systems included the ancient Greeks using
fires, mirrors, or colored flags for visually communicating over
large distances, and the the 18th century French using a system
of telescopes and semaphores. These involved relatively well-
connected systems of relay infrastructure, compared to the
earlier methods that involved physical carriage of the stored
messages for some time in order to reach the next forwarding
point. Telegraph and later systems had equally well-connected
infrastructures.

In the present day, the postal system is a well-understood
example of a physical store and forward system. This is
well-connected system of storage and forwarding agents (mail
boxes, post offices, mail carriers, trucks, airplanes, etc.) with
various capabilities (storage capacity and delivery capability)
and location-dependent addressing and routing.

A. Store and Forward Systems

In computer networking, numerous technologies that sup-
port SF message communications between systems have
evolved, and some have incorporated pieces of what SCF
systems require. We very roughly group these developments
into “generations” in order to highlight a general progression
of capabilities. This is not prescriptive, and though some
detailed aspects of the classification may be debatable, the
basic notions hold.

1st-generation Store and Forward systems consisted of
Message switching, with buffering of messages at intermediate

TBD 3

nodes in order to handle intermittent connectivity. There was
little or no automation, intelligence, or capabilities for forming
routing tables, security, network management, and handling
anything but rather slow-scale dynamics. Examples include
Unix-to-Unix Copy (UUCP) [3] and FidoNet [4] “In FidoNet
As all modem phone numbers are published in the nodelist,
point-to-point transfers are always possible. But, as store-
and-forward capabilities are specified in the basic standards,
email tends to be routed through a world-wide hierarchic
topology and enews via a world-wide ad hoc, but generally
geographically hierarchic, acyclic graph.”

2nd-generation SF consist of Internet email via Simple
Mail Transfer Protocol (SMTP) [5], Post Office Protocol
(POP) [6], Internet Message Access Protocol (IMAP) [7],
Secure/Multipurpose Internet Mail Extensions (S/MIME) [8]
and so on. Key features include separation of message transfer
agents, user agents, and message submission/delivery agents.
There are increased capabilities for security and management.
There is some (weak) separation between message format and
message transfer protocols. Email servers generally operate
within a well-connected environment. There are major per-
formance problems outside this well-connected environment,
because there is little diversity in message transport between
nodes, and little or no improvement in dealing with dynamics.

3rd-generation SF protocols are an advance over 2nd-
generation concepts. These are used to implement messaging
middleware and are applied as the basis of enterprise service
bus systems. There is an increased separation between message
format and message transfer protocols with increased message
transform / mediation capability. There has been a proliferation
of proprietary formats, Application Program Interfaces (APIs)
and systems, with great diversity in capabilities. Generally,
there are still problems operating outside a well-connected
environment, and the security mechanisms are not advanced
beyond 2nd-generation ones. Examples include: JAVA Mes-
sage Service (JMS) [9], Advanced Message Queuing Protocol
(AMQP) [10], Streaming Text Oriented Messaging Protocol
(STOMP) [11], Extensible Messaging and Presence Protocol
(XMPP) [12] and Message Queuing Telemetry Transport
(MQTT) [13]

4th-generation SF protocols are directed at systems with
long delays and intermittent connectivity and are known as
Delay/Disruption/Disconnection Tolerant Networking (DTN)
[14] [15] .

There is very strong separation between format and transfer
protocol as well as strong separation between format and
addressing/routing. Architecturally, there are many alternatives
available for transfer, addressing, and routing with heavy
tailoring per each pocket of deployment. Security is possible
for implementation in a limited subset of intended use cases.
There are a number of experimental implementations including
Interplanetary Overlay Network (ION), DTN2 and others
including substantial profiles of features and capabilities [16].

5th-generation (conceptual) systems include significant
amounts of longer-term storage that can be “carried” between
episodes of connectivity as a main component (i.e. Store,
Carry and Forward) There is an increased separation of
message metadata (i.e. shipping labels) from message bodies

(i.e. containers) beyond the 4th generation, enabling new
approaches to security, forwarding, and possibilities for pull-
based routing. Emphasis is on the “carry” function and need
for strong automation in management of stored data, including
support for implementing policy in Quality of Service (QoS),
security, and routing. 5th-generation systems that embody the
SCF concept have not yet been widely deployed. The fielded
applications that could benefit from such SCF capabilities are
either using point solutions adapted from prior generations
of SF technology, or are lacking the strength in automation,
security, and other features that the SCF technology should
provide. Later sections of this document describe a generic
network architecture expected to be supported by SCF / 5th-
generation systems, the envisioned scenarios and use cases for
these systems, more detailed comparison/contrast with existing
/ prior-generation systems, and a summary of lessons learned
from experience with earlier systems.

III. GENERIC ARCHITECTURE

Figure 1 illustrates a generic SCF network architecture, with
the SCF agents (lableled “SCF”) frequently partitioned into
time-varying disconnected subsets. Depending on specifics of
an individual scenario, it may be likely that some SCF agents
are permanently attached to a connected network in order
to provide stable gateways to/from the other SCF agents.
However, in general, the system should be considered to
consist of a number of primarily disconnected SCF agents at
any point in time. The importance of this consideration as it
relates to design, implementation, and test of potential SCF
protocols is emphasized later in this document, as its effects
have plagued prior SF systems.

When visualizing an SCF network, it may help to think
more along the lines of a topologically dynamically-changing
(mobile) relay system of agents that can periodically commu-
nicate with one another, and may be able to make at least
rough predictions about their future contacts. The distribution
of news and mail in the mid-1800s as described in Herman
Melville’s book, “Moby Dick,” is a good analogy.

“For the long absent ship, the outward-bounder,
perhaps, has letters on board; at any rate, she will
be sure to let her have some papers of a date a year
or two later than the last one on her blurred and
thumb-worn files. And in return for that courtesy, the
outward-bound ship would receive the latest whaling
intelligence from the cruising-ground to which she
may be destined, a thing of the utmost importance to
her. And in degree, all this will hold true concerning
whaling vessels crossing each other’s track on the
cruising-ground itself, even though they are equally
long absent from home. For one of them may have
received a transfer of letters from some third, and
now far remote vessel; and some of those letters
may be for the people of the ship she now meets.....

...Every whale-ship takes out a goodly number
of letters for various ships, whose delivery to the
persons to whom they may be addressed, depends
upon the mere chance of encountering them in the

TBD 4

Fig. 1. Store, Carry and Forward Network

four oceans. Thus, most letters never reach their
mark; and many are only received after attaining an
age of two or three years or more.”

Another analogy that illustrates aggregation and deaggrega-
tion are the parcel post delivery companies. Here, individual
packages (containers) are delivered from a source to destina-
tions via numerous transport mechanisms, e.g. trucks, planes,
trains and boats. Along the way, these packages are aggregated
into larger and larger shipping containers as they move further
from the source, and then and deaggregated into smaller and
smaller containers as they move closer to the destination. Such
aggregation and deaggregation enable scaling of the system.
There is a strong parallel between this flow of packages and
the data flows seen in some of the scenarios described later in
this document.

IV. OPERATIONAL CONSIDERATIONS

Some of the key operational considerations for SCF are:
• What types of applications might be suitable to utilize

SCF networking?
– Engineering Telemetry - Accumulated over time for

offline monitoring and analysis of some device or sys-
tem’s performance, which may be related to long-term
administration of the device, but occurs in non-realtime
and at a remote location. Fidelity of the received data
is important, though partial delivery of data may be
acceptable and more desirable than slower delivery of
complete and fully accurate data. It is expected that

a telemetry-sending application may operate in a fire-
and-forget mode, where it does not retain data after
sending.

– Science Data Gathering - Similar to engineering
telemetry, but sensor data is collected at a potentially
much larger volume or over a much longer timescale.
Accuracy of the delivered data is critical, and timeli-
ness in routing may be sacrificed to provide a complete
and error-free data set. Due to the size of data sets
collected, having multiple copies in-flight within the
network may be undesirable, and end-nodes may need
to purge old data after it has been sent in order to
gather new data.

– Software Update - Numerous deployed devices that
may never be able to contact an update server in
realtime may need to have patches or updates deployed
and activated. This can require high reliability and
guarantee of eventual delivery of the data, even if
the latency involved in applying the update is not
extremely critical. The sender is likely to retain access
to the sent update/patch perpetually, even after copies
have been distributed into the network. While some
acknowledgement of reception end-to-end may be de-
sirable, this might be inferred through other means at
the application level (e.g. via telemetry) rather than
requiring SCF-level acknowledgement.

• In general, any distributed application where senders and
receivers can operate asynchronously in non-realtime,
without any real-time requirement on the infrastructure

TBD 5

(e.g. to do resolution of DNS names) might be able to
function over an SCF service.

• What are the potential deployment environments and
platform capabilities?
– Some relevant use cases are discussed in detail in the

following section. In general, the SCF agents may be
either co-located or independent of the hardware/soft-
ware platforms that host the end-applications. Aside
from having a non-trivial amount of persistent storage,
very few assumptions can be made about the SCF agent
computing platforms. Typically, they will have to be
embedded systems, e.g. within a device that’s part of
some other portable electronic system (e.g. handheld
device, medical implant, avionics hardware, etc.) rather
than typical workstations and servers. This means that
links are expected to be (much) less capable and
more time-varying than wired Ethernet, and frequent
administrative access is not likely to be possible.

• What are the upper-layer user/application data-set sizes?
– From existing systems in-use that could benefit from

SCF, at least several GB of data collected onto an
SCF agent between contacts with other SCF agents is
possible. There are also applications where only several
kilobytes of container are necessary.

• What are the traffic patterns?
– In envisioned SCF scenarios, movement is not fully

random, even for mobile ad-hoc networks, though at
the very edges, it may appear random.

– In envisioned SCF scenarios, information flow is not
fully random, even for mobile ad-hoc networks.

• What type of interface between SCF agents and end
applications is feasible?
– Applications should be able to select their own

globally-unique identifiers and notify SCF agents of
them, along with providing proof of ownership. SCF
agents may be able to notify applications of pending
received data, but applications are always able to poll
a SCF agent for such data as well.

• What interaction between SCF agents is expected?
– When in contact with one another, SCF agents mini-

mally need to be able to identify one another securely
and prove that they can be trusted as relays for a
given destination application. Agents should be able to
indicate (or deny) forwarding of individual containers,
based on exchanging their labels only.

V. USE CASES AND DEPLOYMENT SCENARIOS

There are numerous deployment scenarios for SCF systems.
The following section highlights a few more common scenar-
ios.

A. Data Mule

The Data Mule scenario illustrated in figure 2 is a common
generic scenario and shows up in many deployments. In the
Data Mule scenario, SCF agents communicate with each other

Fig. 2. Data Mule Scenario

mainly via some type of circulating entity carrying data, called
the “mule”. This entity may be an unmanned (or manned)
aircraft, a ship, a bus, or any type of vehicle that periodically
moves over the same relative area. Connectivity is likely to
consist of high periods of disruption followed by short periods
of connectivity over relatively high-bandwidth, low-delay, and
possibly symmetric, links.

In the Data Mule scenario, connectivity is generally of the
episodic variety (opportunistic). There may be one or a larger
number of mules; each of which runs its own SCF agent.

Within this type of Data Mule scenario, the generic use case
for SCF networking involves an application being able to push
its data into containers on a SCF agent, who then interacts with
the Data Mule SCF agents in order to deliver the containers to
destination applications attaching to other SCF agents. In order
to realize this use case, the SCF agents need to be identifiable
to one another during periods of episodic connectivity, and
the mule needs to somehow be able to express its expected
future capability to relay containers towards the destination
application.

The Data Mule is a common military scenario. It is often
used to join partitioned connected networks such as groups
of Mobile Ad Hoc Network (MANET). In figure 2, the SCF
Agents could be concentrator points in a MANET cluster
that enables communication between disjoint MANETs on the
battlefield, thus enabling communications between clusters on
the far ends of the communication infrastructure, the edge
networks.

B. Data Gathering

The generic Data Gathering scenario is also quite common
and applicable to SCF networks. Specific use cases involving
sensorwebs, medical monitoring and animal tracking would fit
into this scenario. Figure 3 illustrates a sensorweb where some
sensors wake up and forward data through other SCF agents
until they reach an SCF connected to a more powerful radio
system. A gathering agent may then come by from time to
time (e.g. days, weeks, months) and collect the data.

Major challenges of the use cases in a Data Gathering
scenario, which go beyond those of a Data Mule, are related to

TBD 6

Fig. 3. Data Gathering Scenario

Fig. 4. Traveling the Beaten Path

the increased level of complexity in the topology between SCF
agents. There is potentially less predictability, potentially more
heterogeneity (or hierarchy) in SCF agent capabilities, and
potentially a higher risk of routing loops or wasted resources.

The use cases for Data Gathering do, however, involve data
flows that are generally either all directed from sensors up
through the Gathering Agents or down from the Gathering
Agents, so these still represent a sort of core network that all
containers eventually go through (similar to the Data Mules).

C. Traveling the Beaten Path

There are many instances where communications may occur
between entities traveling a well-worn path. In this scenario,
communication is more ad-hoc than the data-mule example.
The probability of encountering other SCF agents is quite high.
Such scenarios include: communication in mining operations,
among hikers, among boats along well traveled waterways,
within the fisheries industry (the Moby Dick example) and
along trade routes.

Figure 4 illustrates Traveling the Beaten Path. Consider a
nomadic trade route in a third-world country. Here, SCF-1
may travel from the one end of the path to the other in one
direction, while SCF-5 moves in the other direction. SCF-1
and SCF-5 will encounter all others along the way. SCFs 2,
3 and 4 only move along portions of this trade route. Most
likely, none of this information is known in advance, and the
movements may or may not be predictably repeatable.

D. Rapid Disruption

Many wireless networks (particularly military ones), when
connected, may be relatively well-connected to a large number
of other nodes in near real-time. However, individual nodes or
subsets of the network may be only episodically connected
because of variable link conditions given terrain, foliage,
weather, jamming, or desire to evade detection. Furthermore,
even when basically connected, temporary radio signal power
fades can cause rapid, short, periods of disconnection. All of
these lower-layer hindrances may result in short periods of
disruption witnessed by applications, as well as rapid changes
in network topology and the set of reachable relays.

Applications that use the Transmission Control Protocol
(TCP) may perform very poorly in such environments due
to TCP’s congestion control algorithms - even in a non-
congested environment. Furthermore, any use of the Domain
Name System (DNS) is problematic in a disrupted network as
one is likely to be unable to reach the DNS server. Caching
DNS locally is one possible solution.

This provides some potential solutions for such networks.
Routing may be capable of moving containers towards desti-
nations via store-and-forward if the proper naming structures,
addressing and routing algorithms can be developed.

Routing in a rapidly-changing topology is problematic and
can result in very poor performance over wireless technologies
as there is a potential to have the routing algorithms self-
congest the wireless links and still not be able to converge
properly.

In tactical edge military networks there may be a mix of
Internet Protocol (IP) and non-IP radios. DTN Bundling, as a
network overlay, provides a means to bridge IP networks and
non-IP data-links together.

E. Dismounted Soldier

On the battlefield, it often occurs that a group of soldiers
is on a mission and arrives via a vehicle or group of vehicles,
one of which may have very good connectivity to larger
networks. Once dismounted, much of the communications
may be via use of that vehicle communication system as a
relay or anchor. Once the group moves a significant distance
from this anchor and from one other, they may become
disconnected for periods of time. At this point, it becomes

TBD 7

Fig. 5. Low Earth Orbit Sensor Satellite

necessary to improve communications and maintain situational
awareness. This provides communication in two ways. Near-
synchronous communications might be maintained via multi-
hops through other agents, or in the worst case, asynchronous
communications can be served sporadically when within radio
contact of the anchor relay on the vehicle.

This scenario is also applicable to first responders during
disaster situations where infrastructure may be severely dam-
aged.

F. Low Earth Orbiting Sensor Satellite

The Low-Earth Orbit (LEO) scenario shown in figure 5
is for a sensor satellite communicating directly with ground
terminals. One such network is described in reference [17].
Note, in this scenario, no geostationary relay satellite is
involved. Here, the contact times may be known in order
to direct the satellite transmitter to turn on. Some type of
automated hailing could also be used.

LEO is a low-propagation-delay environment of less than
ten milliseconds delay to ground, with long periods of discon-
nection between passes over ground stations. Contact times
consist of a few minutes per ground station for Earth satellites
orbiting at a couple hundred kilometers altitude (100 minutes
per orbit). Thus, the more ground systems that are available,
the greater the potential for contact. The ground stations are
connected across the terrestrial Internet, or other backbones.

In this scenario, the agent onboard the satellite does not need
to perform forwarding of received containers. The satellite is
a source for sensor data and may be a sink for command data.

The main reason to use SCF in this scenario is to provide
a standardized relaying technique and to decouple the control
loops between the space/ground link and the ground/ground
link.

There are numerous companies and systems today that
transfer extremely large sensor data sets from LEO to ground
without a standardized method. Those data sets are in the
multi-gigabyte region and growing. However, they are using
protocols and implementations that are not compatible with
one another, and which require them to go through various
levels of customization per-use.

VI. CONSIDERATION OF EXISTING TECHNOLOGIES

In this document, we characterized DTN-based systems as
4th-generation SF rather than systems. Several aspects of DTN
are highly desirable and applicable to SCF. DTN utilizes
“bundle agents” that are similar to the “agent”. Several DTN
routing protocols, that exist at varying levels of maturity, can
work well for individual scenarios that have been outlined.
For instance, Contact Graph Routing is particularly useful
in scenarios where future connectivity is predictable/known
ahead of time. The container aggregation and deaggregation
bears some surface similarity to bundle fragmentation oper-
ations in DTN, but there are major differences. Containers
are intended to be aggregatable within the network, even if
they are not portions of the same original container from the
application. Additionally, some applications (e.g. science data
collection) may find (optional) partial reception of subsets
of large containers that have been deaggregated into smaller
containers, to still be useful, whereas DTN only delivers entire
(reassembled) bundles. This does require the data formats used
by such applications to be self-synchronizing, so that they can
be parsed, but this is an issue for the application. scenarios
require some features that are not yet a part of the DTN
specifications:

• The ability to avoid Denial of Service (DoS) by propa-
gating an application’s permit/deny filters to agents.

• The ability to generate and prove ownership of globally-
unique application identifiers.

DTN is the targeting of operation over very high-latency
data links. SCF does not explicitly attempt to operate over such
links, though it may end up being possible. Since these links
are mostly only applicable to deep-space scenarios with small
numbers of nodes, motivations do not include high-delay.

This document also identified JMS and Message Queu-
ing Telemetry Transport (MQTT) message-broker systems
as 3rd-generation SF rather than systems. JMS “messages”
transferred between “brokers” and applications are similar
to the containers transferred between agents and applica-
tions. JMS offers both point-to-point (unicast) and publish-
subscribe (multicast) models of communication. JMS uses
named “queues” (in the point-to-point model) or “topics” (in
the publish-subscribe model) in order to identify destinations.
JMS brokers often implement a “durable” messaging service
that allows messages (and queues) to persist even when the
applications that created them (or need to receive them) are
disconnected from the broker. scenarios require some features
that are not yet really reflected within the JMS specifications:

• Multi-hop relaying among brokers and secure propaga-
tion of information about the queues/topics present or
acceptable is not standardized.

• Communication of an application’s desired permit/deny
filters on queues that it owns is not standardized.

JMS is an API and not a protocol standard. This is the
primary hurdle in using JMS to support , as the wire-
protocols and other mechanisms used in a particular JMS
implementation are not necessarily compatible with others.
requires full vendor/platform interoperability in order to be
cost-effective to pursue in preference to point-solutions. JMS

TBD 8

is also significantly focused on transfer of Java objects rather
than generic containers of bytes as should be.

One of the biggest challenges to using existing systems
(whether they be DTN implementations, JMS products, or
some others) is that most have been designed to include a
multitude of additional (optional) features and this results in,
at best, limited compatibility between implementations. For
instance, the DTN Bundle Protocol is an excellent platform
for experimentation due to its flexibility and ease of defining
new “blocks” to implement different functionalities. DTN has
been used or demonstrated in a wide range of scenarios
with differing needs, including simulated military exercises,
connecting people in remote regions, moving data from LEO
spacecraft, deep-space missions, mining operations, and oth-
ers. However, individual implementations have been developed
to support distinct subsets of the defined blocks, identifier
schemes, and algorithms that suit the unique properties of
their pet environments. Developing, and then maintaining, a
baseline for compatibility has not been a primary concern.
For an operational system, a baseline profile of the required
functionality would need to exist, which could be present
across the spectrum of vendors. For DTN, this type of profile is
not present in the existing systems to a level that would enable
the scenarios described in this document. Saving energy and
running on very small devices (e.g. sensors and embedded
medical devices) also motivates having such a profile that
could aid in developing very small, yet fully compatible,
implementations.

Message Queuing Telemetry Transport (MQTT) is a
lightweight protocol used for publish/subscribe messaging
between devices. MQTT was designed for low-bandwidth,
high latency networks while attempting to ensure reliability
of delivery. A major design criteria was simplicity - must
be simple to implement and must not add too many “bells
and whistles” that would complicate implementation, while
still providing a solid building block which can easily be
integrated into other solutions. MQTT is designed to handle
frequent short periods of network disruption using a technique
called “Last Will and Testament”. Although not part of the
specification, MQTT has been modified to operate in multi-
hop environments.

VII. CHARACTERISTICS OF INFORMATION

Since information has to be transported and stored, in an
use case, it is important to be aware of the key characteristics
of the information being acted upon. All information has a
source and one or more eventual destinations. All application
information ready to be sent, has a size that may be very
small or quite large (several bytes to multiple gigabytes). Size
is important because storage is not unlimited in either the
source application’s system nor in the relays, and because
transmission bandwidth and contact times limit the amount
of data that can be sent during any given contact time.

Information may have security restrictions placed on it -
sensitive or restricted (for your eyes only), and in some cases
this may be handled at the application layer, as is done by
securing email.

All information has a useful lifetime. It may be very short
(seconds) or very long (days, weeks, years). Regardless, it is
only the users of the information that know what the real useful
lifetime is, and it is the application that would be required to
set that lifetime. With the exception of specific cases, it is
not at all clear that the application can generally make that
decision.

Often data has a “freshness” characteristic. For a given
application, data that is more recent (fresher) is often of greater
value that data that is older (stale). In such cases, it may be
more important to forward the most recent data, rather than
the data that is near the end of its useful lifetime. One might
even purge the system of stale data. One trivial example that
illustrates why data freshness is important would be reception
of stock quotes. Obviously, one would not expect such systems
to be used for commodities trading due to disruption and
ordering issues (assured timeliness). Rather, applications such
as sensor data transmissions, software updates or distributed
security-key databases are more amenable to deployments.

VIII. NETWORK MANAGEMENT

Network management is needed to keep the network running
smoothly. It is required for system configuration and mainte-
nance, and monitors the system to determine faults, perfor-
mance, security issues and accounting. From the scenarios
presented, it appears that network management is likely to
be per-scenario, and may be effectively accomplished out-
of-band. For example: in the Data Mule scenario, one may
manage the data mule, but not the edge systems. In the Data
Gathering scenario, one is likely to preconfigure the remote
sensor nodes and only manage the data-gathering and perhaps
the data concentrators, the ones with high-power radios.

This does not imply the network management could not
or should not be performed in-band; only that it may not be
required.

Since resources (e.g. bandwidth, transmit power, and stor-
age) are a precious commodity in networks, policy that man-
ages those resources is expected to be a major component
of system configuration. For example: a particular agent may
restrict particular information sources to limited storage space
and limited storage time. Such policy may restrict all informa-
tion to a limited storage time in order to purge stale containers.
Also, particular sources may get preferential treatment per
peering agreements.

IX. LESSONS LEARNED SUMMARY

There are numerous lessons to be learned from previous
deployments of MANETs and 4th-generation store and for-
ward networks such as DTNs. Some of the more critical and
important pieces of knowledge are listed below:

• systems are generally connected via radio networks.
Some radio systems may take far less power to listen
than to transmit, though this varies by individual link
technology. Wasted transmission is wasted power on a
wireless system and can quickly drain a battery. The
problem is compounded for devices whose entire lifetime
is determined by their battery (e.g. non-rechargeable

TBD 9

sensor nodes). Thus, reducing wasted transmissions is
high desirable.
– The ability to reactively fragment large data sets en-

route is highly desirable. This has been demonstrated
in DTN experiments.

– Routing loops will not be caught by layers below. It is
imperative that data dies naturally and quickly so as to
not waste bandwidth or transmission power. Such loops
have been encountered in early experiments with DTN
overlays, and are correctable.

– It is highly desirable for the sender to know early
in a transmission whether or not the receiver will
accept the data. This permits a savings in power and
optimization of network capacity usage. For instance,
in DTN experiments with large bundles, the entire
large bundle may be sent, only to be discarded due
to security, resource scarcity, or other issues.

• Disconnected networks are difficult, if not impossible, to
globally synchronize state across.

• When investigating the use of DTN bundle lifetimes in
DTN deployments and implementations, we have found
that the lifetimes have generally been set to match the
duration of the experiment. There are instances where
some finer granularity has been deployed such and in the
Defense Advanced Research Project Agency (DARPA)
Wireless Network after Next (WNAN) where a small
number of choices in lifetimes of minutes or hours are
used depending on the nature of the data. The DTN
bundle lifetime can be used for two purposes: expe-
dited forwarding for end-applications and purging stale
information from the relays. Thus, the real requirement
should be the ability to expedite forwarding of priority
containers and purge stale containers from the system,
but not necessarily to specify time-sensitivity on a per-
second basis. There may be other means to accommodate
this requirement without having to burden the agents with
the management and synchronization of notions of “time”
- particularly per container - which has been burdensome
in DTN use.

• Managing fine-grained notions of time in a protocol is
difficult and adds considerable complexity.

• Having a relay protocol be time-dependent opens it up to
security vulnerabilities.

• Having a relay protocol be time-dependent complicates
use of that protocol to synchronize the system - even for
coarse synchronization.

• It is highly desirable for a receiving agent to determine
early within a transfer whether or not to accept the data.
Large data sets utilize significant processing and storage
resources for data that may end up being discarded due
to security, resource constraints, or other policy issues.

• It is highly desirable to keep forwarding tables small, and
make forwarding decisions ahead of time for predicted
contacts. Book-keeping type of processing while forward-
ing a large number of small containers can overload the
processing system.

• Testing should be thorough and include exercising both
the storage and forwarding systems. Failure to do so will
lead to erroneous results . Thus, any testing and validation
should exercise both the storage and forwarding mecha-
nisms of the implementation. To do otherwise may lead
to misleading results.

X. SECURITY CONSIDERATIONS

Applications need to authenticate to an agent before they
can send or receive containers.

Authentication of agents to one another needs to be tackled
before advertisements of forwarding capability can be acted
upon.

Bandwidth, Storage, and Processing Power are precious
resources in an SCF network. In order to reduce DoS vulner-
abilities and properly allocate resources, an SCF agent should
be able to determine whether or not to act on a container based
solely on the Shipping Label.

Applications should be able to limit DoS by expressing
explicit desires to a serving agent for/against certain traffic
selectors. It may be beneficial for this information to propagate
between agents, though it should be recognized that any
dynamics in these preferences causes a risk of data loss due
to lack of synchronization of the filter rules.

While some aspects of Public Key Infrastructure (PKI)
may be applicable, PKI itself is not because, in general,
PKI requires connectivity. Public-Keys with caching may be
applicable; however, this would require at least some coarse
network synchronization.

XI. REQUIREMENTS AND EXPECTATIONS

The following subsections describe the requirements for a
Store, Carry and Forward (SCF) protocol, and the expectations
placed upon the SCF agents and SCF applications.

A. Design Considerations

The following design considerations are explicitly stated
with a goal of keeping the protocol simple. (Anyone can make
things more complicated!)

• Do not overload the relaying protocol. Keep It Simple.
– Keep network management functions separate from the

relaying protocol.
– Content Based Networking is different than SCF.
– SCF can be used to move content, but should not be

considered an in-network content store.
– Rationale: Separation allows for independent develop-

ment and optimizations.
• The SCF protocol MUST NOT rely on time synchroniza-

tion between applications or relaying agents.
– It is very difficult, if not impossible, to synchronize

disconnected networks. Furthermore, if the protocol
requires synchronization to work, it can never be used
to synchronize a system - even for coarse synchro-
nization. In addition, reliance on absolute time creates
security vulnerabilities.

TBD 10

• Protocol options make interoperability hard. Options are
often used as a placeholder for fixing a bad design.

• Naming and addressing are key to security and scalability.
• Addressing should be topological (location dependent).

This enables aggregation of the routing locator space and
improves scalability for the routing system.

• Strive to limit the size of the forwarding table. Large
forwarding tables place a great burden on the SCF
processing system. There is always a limit for any Central
Processing Unit (CPU). The further one is removed from
reaching that limit, the better.

B. Protocol Requirements
The following are a list of requirements for a SCF Protocol.

The requirements are specifically written in general terms. The
intent is to identify what is required, not how to solve the
requirement. The requirements are in no particular order of
precedence, but are numbered in order to aid in referencing
for discussion.

SCF Agent Requirements and Agent operation expectations
have been intentionally separated, as the SCF Agent require-
ments are more policy-based than protocol-based. However,
one needs to understand both in order to effectively implement
the SCF protocol.
proto 1: The SCF relaying protocol MUST be able to handle

data sets that are very small (several bytes) and very
large (several gigabytes).
• Rationale: SCF is useful for very small, simple,

low-power, low-processing minimally-capable sen-
sor systems, as well as for more capable high-end
data mules. In a simple sensor-web one may be
moving extremely small containers of information
on the order of bytes; whereas later onward de-
livery by a data mule may be moving containers
containing gigabytes of data.

proto 2: The SCF protocol MUST permit SCF agents to be
able to aggregate containers.
• Rationale: Aggregation will reduce forwarding ta-

ble size and enable pre-processing of forwarding
queues. Without aggregation, the SCF agent pro-
cessing capabilities can be quickly overwhelmed -
particularly for a large number of small containers
- even if those containers are destined for the same
location. Aggregation and Deaggregation enable
efficient shipping of information through a SCF
network from a variety sources to a common des-
tination by continually recombining containers as
the information moves through the relay network.

proto 3: The SCF protocol MUST permit SCF agents to be
able to deaggregate containers.
• Rationale: Deaggregation allows subcontainers to

be removed from larger aggregated containers and
either shipped separately due to contact limitations,
or spread out to multiple other relaying SCF agents
in parallel.

proto 4: The SCF protocol MUST permit SCF agents to be
able to reactively fragment a container.

• Rationale: It is often not possible to determine how
long a contact time will be between SCF agents. In
such instances, which may be the norm, one cannot
determine the transport capacity and may only be
able to transfer a portion of a container before
the contact ends. In order to improve transport
efficiency and effectively utilize the radio link, one
should not have to retransmit what has already
been received.

proto 5: The SCF protocol SHOULD permit SCF agents to
be able to proactively fragment a container.
• Rationale: It may be possible to a priori know

the transport capacity between SCF agents. In
such instances, one may determine that an entire
container could only be transfer between agents
if it is divided into smaller units. In other cases, a
SCF agent may wish to limit the size of containers
as a matter of policy. In either of these cases,
proactive fragmentation would be useful. However,
it would be more desirable for the application to
limit the size of the container if at all possible,
rather than having this done by the SCF agent.

proto 6: An SCF protocol MUST implement reliability on
the Shipping Label, and a damaged Shipping Label
MUST NOT propagate to further SCF agents or
have its container further propagated or delivered to
applications.
• Rationale: An SCF agent needs to be able to

determine if the shipping label is damaged in
order to prevent misdelivery of data, waste of
resources (storage, battery, network capacity, etc.),
and other suboptimal results of operating on flawed
forwarding information.

proto 7: An SCF protocol MUST be capable of implementing
reliability on the Shipping Container.
• Rationale: An SCF agent must be able to determine

if the shipping container is damaged. A damaged
Shipping Container MAY be discarded along with
the associated Shipping Label. Note, user of relia-
bility on the Shipping Container is not mandatory,
but the ability to have such capability is.

proto 8: The SCF protocol security implementation MUST
authenticate the Shipping Label independent of the
Shipping Container.
• Rationale: The ability to authenticate data sources

and control resource usage early on is critical to re-
ducing vulnerabilities to denial-of-service attacks,
whether intentional or unintentional. For large con-
tainers, if the entire container had to be received
and processed before a determination could be
made as the the source of the Container, multiple
resources would be wasted including bandwidth,
processing cycles and storage.

proto 9: The SCF protocol security implementation MUST
work with reactive fragmentation.
• Rationale: For medium- and high-end SCF sys-

TBD 11

tems, the ability to authenticate data sources and
control resource usage is critical. Likewise, reac-
tive fragmentation may be quite common and has
been shown to be invaluable in transporting large
data sets [18].

proto 10: The SCF protocol security implementation MUST
have a security policy database to control resources.
• Rationale: Once a data source is authenticated,

the security policy will determine what type and
amount of resources that source can use, as well
as possibly the forwarding priorities. It is antici-
pated that SCF systems will have different peering
arrangements with different entities (e.g. peers,
groups, or organizations).

proto 11: The SCF protocol MUST be able to separate the
Shipping Label from the Shipping Container
• Rationale: The SCF agent must be able to deter-

mine whether or not it wishes to receive or store
a container prior to receiving the entire container.
This reduces denial-of-service vulnerabilities and
enables efficient use of radio and system resources.

proto 12: The SCF protocol MUST have a mechanism that
enables data to die naturally.
• Rationale: Data should die naturally to avoid rout-

ing loops at the SCF layer. Routing loops at the
SCF layer cannot be eliminated by lower-layer
mechanisms (i.e. and Internet Protocol version 6
(IPv6) hop count will not correct an SCF routing
loop).

proto 13: The SCF protocol MUST have a naming mechanism
that specifies the application and instance to which
the content is bound.
• Rationale: This naming mechanism is necessary

in order for the SCF agent end system to pass the
Shipping Container content to the proper instance
of a given application since multiple instances may
be invoked at any given time.

proto 14: The SCF protocol MUST have a Quality-of-Service
(QOS) mechanism to expedite forwarding and to
handle storage lifetimes.
• Rationale: Past experiences with other store-

and-forward technologies such as DTN [15]
have shown that it is very difficult for many
applications to determine how long the useful
life of data is. Rather, bundle lifetimes have
been set either arbitrarily or rather coarsely
(e.g. short, medium, forever) - see ¡eref tar-
get=”http://www.dtnrg.org/wiki/DtnBone”¿Bundle
Lifetimes¡/eref¿. QOS will enable and SCF to
expedite, store and purge data on a much more
coarse scale than the use of absolute or relative
time. Such QOS policies could be a configuration
setting within individual SCF agents, or within
an SCF network. This greatly simplifies the
protocol processing as well as aggregation and
deaggregation of containers.

proto 15: The SCF protocol MUST have a mechanism for
a receiving system to acknowledge reception of a
container from the sending system (i.e. hop-by-hop
acknowledgements).
• Rationale: This allows a sending system to release

the container if it so desires, thereby improving
resource usage.

proto 16: The SCF protocol MUST have a mechanism to no-
tify a sender that the container will not be processed.
• Rationale: If the agent’s policy states “Do not

accept” for any possible reason, it is important
to inform the sender as soon as possible (ASAP)
that the container will not be accepted, to allow
the sender to stop transmission and determine a
different route for that container. Note, there may
be security reasons not to provide this information,
but in generally such a response SHOULD be sent.

proto 17: The SCF protocol SHOULD have a mechanism that
enables one to identify fresh versus stale content for
a given flow.
• Rationale: Fresh data is often of far greater value

than stale data. The ability to identify fresh data
and either replace the stale data with fresh, or send
the fresh data first, is highly desirable in order to
optimize resource usage - particularly storage and
bandwidth.

• Comment: There appears to be a desire in many
instances to proactively create fixed bundle sizes
in DTN and then what the application to put them
back in order. With proactive fragmentation, this is
possible and there is a mechanism to allow reorder-
ing. With straight bundling, this is problematic as
there is no such formalized standard sequencing
(i.e. sequence numbers).

C. Agent Requirements and Expectations

The following are a list of requirements for an SCF Agent.
The requirements are in no particular order of precedence, but
are numbered in order to aid in referencing for discussion.
agent 1: An SCF agent MUST NOT be required to implement

SCF security. Security must be optional.
• Rationale: Simple devices such as sensors may

wish to utilize the SCF protocol, but have neither
the need for security, nor the processing capability
to implement SCF security.

agent 2: An SCF agent MAY implement reliability on the
Shipping Container.
• Rationale: An application may or may not care if

the contents of the container arrive without modi-
fication. For example, protecting a large image file
from a bit flip may not be considered as important
as reducing the processing overheard of creating
and checking reliability on the Shipping Container.

agent 3: An SCF agent MUST hold onto a container until it
can either be transferred or QOS policy indicates its
useful lifetime has expired or storage resources reach

TBD 12

a level that requires some purging of containers based
on policy.
• Rationale: The sender expects the receiver to do

its best to forward the container, and MAY release
the container upon notification from the receiver
that the container has been received. If the re-
ceiver does not plan to hold onto the container, it
SHOULD send a notification to the sender stating
such.

agent 4: An SCF agent MAY remove a container once it
receives notification from the next hop SCF that the
container has been delivered.
• Rationale: The ability to release containers enables

efficient use of storage resources. Note, some
deployments and some routing protocols MAY
mandate that the agent retain a container even
after a successful transfer. In such deployments,
containers would likely be removed based on a
retention policy which may be based on QOS.

agent 5: An SCF agent SHOULD NOT accept a container if
it has no intention of giving a best effort to forward
the container.
• Rationale: The sending SCF’s default expectation

is that, if accepted, the receiving SCF will do
its best to forward the container. This allows the
sending SCF, if so desired, to purge the container
from its storage with some confidence that the
container will be delivered.

agent 6: An SCF agent SHOULD implement a policy system
that controls resources. Such a policy system MAY
include the filters described below.
• Rationale: Resources including bandwidth and

storage storage are precious commodities that
need to be controlled. Various SCF deployments
are expected to have vastly different capabilities
and needs. For example, an SCF science sen-
sorweb may have not need for security, while
implementing a policy that basically says “Accept
Everything”, because all containers are know a
priori to be small and the deployment is a closed
network. Other deployments may consist of high-
end SCF agents supporting multiple organizations
and transferring and storing Gigabytes or more
of information. The ability to tune the policies
to fit the deployment makes such deployments
realizable.

a) What volume (size) container will be accepted.
• Rationale: Storage resources are not infinite.

It is likely policy will limit container size
and/or overall memory allocations per source,
address range, or other filters. In addition,
some SCF agents may have limited processing
and not be willing or capable of handling
extremely large containers

b) What sources are permitted to use resources and
how much resource?

• Rationale: Resources including bandwidth
and storage are precious. It is anticipated that
peering arrangements will exist to populate
this database. Not every source may be per-
mitted to utilize the resources.

c) What destinations are permitted to use resources
and how much resource?
• Rationale: Resources including bandwidth

and storage are precious. It is anticipated that
peering arrangements will exist to populate
this database. Not every destination may be
permitted to utilize the resources.

d) Prioritized container delivery.
• Rationale: It is anticipated that peering

arrangements will exist to populate this
database. Some peers are likely to be given
preferential treatment, while others may be
serviced only after all commitments have been
met, regardless of QoS (e.g. the general’s
containers are processed before the private’s;
the organization who owns the SCF agent gets
preferential treatment over all other organiza-
tions.

e) A mapping of QoS to retention lifetime and
forwarding priority.
• Rationale: A coarse-grained retention policy

is anticipated. Such granularity may be min-
utes, hours, days, forever (until resources be-
come scarce and memory must be released).
This alleviates the need for actual lifetime
settings within the SCF protocol and allows
various deployments to be uniquely config-
ured.

agent 7: If security is implemented, when coming in contact
with one another, adjacent SCF agents MUST min-
imally be able to identify one another securely and
prove that they can be trusted as relays for a given
destination application.
• Rationale: Such a mechanism is necessary to pre-

vent hijacking of information. Also, aggregation
and deaggregation may be implemented along a
container’s route. Trust between forwarding agents
must be established to enable this.

agent 8: SCF Agents MUST be able to indicate (or deny)
forwarding of individual containers, based on ex-
changing their shipping labels only.
• Rationale: This allows for efficient use of RF re-

sources as well as reducing DOS vulnerabilities. It
the SCF Agent had to process an entire Container
prior to denying acceptance, a malicious entity
could easily perform a DOS attack by sending
extremely large containers which would have to be
stored and processed by the receiving SCF prior
to rejection.

agent 9: SCF Agents MAY notify applications of pending
received data.

TBD 13

• Rationale: If the SCF agent knows it is bound
to an application and can notify the application
of pending received data, this could improve the
application’s operations.

D. Application Requirements and Expectations

The following are a list of requirements for Applications
that would be used over a SCF network. The requirements
are in no particular order of precedence, but are numbered in
order to aid in referencing for discussion.
appl 1: Applications SHOULD be designed to operate in a

disconnected systems.
• Rationale: Applications that have been designed

assuming a connected network are likely to break.
• Rationale: Streaming may work, but should not be

encouraged as streaming applications with reason-
ably significant volumes of traffic are likely to only
work for connected systems or very short fades.
Such systems probably do not need SCF.

appl 2: Applications MUST be able to select their own
globally-unique identifiers and notify SCF agents of
them, along with providing proof of ownership.
• Rational: A given service may run at one or more

nodes, and may need to move from one node to
another without losing its identity as a service.

• A given node may be connected to one or more
network attachment points, and may need to move
from one attachment point to another without losing
its identity as a node.

• A given pair of attachment points may be connected
by one or more paths, and those paths may need to
change with time without affecting the identity of
the attachment points [19].

appl 3: Applications MUST be able to poll a SCF agent for
pending received data.
• Rationale: Applications are the only ones that can

keep track of the shared state between sender and
receiver. The Application cannot expect lower lay-
ers such as the SCF agent to fully understand its
needs.

• Rationale: This eliminates putting undue burden on
the SCF, and ensures interoperability to specify a
known operational expectation.

XII. TESTING STORE, CARRY AND FORWARD SYSTEMS
AND PROTOCOLS

In RFC760 [20], one can find what has become know as
Postel’s Law or the Robustness Principle, “In general, an
implementation should be conservative in its sending behavior,
and liberal in its receiving behavior.” This rule was originally
targeting protocol implementation. A corresponding rule for
testing may be, “If you claim the protocol can do it, you have
to prove it - test it.”

Conversely, being able to simply ping an end system does
not indicate the network is fully functional. It just means that

Fig. 6. SCF Test Network

there is connectivity and the potential for the network to be
fully functional.

The intent of this section is to establish thorough, repeatable,
tests that will fully exercise a SCF system. Past experience has
shown that testing of SCF systems is too often inadequate. For
example, tests have been performed on SCF systems in fully-
connected, high-bandwidth networks where only forwarding
would be exercised, or the traffic would be so minimal as to
never tax the storage or queueing. Such tests are valid as a
starting point, but insufficient to determine that a protocol or
implementation will working properly in a reasonably-scaled
deployment.

A secondary motivation is to improve implementations by
providing a known test environment. Knowing some possible
ways that the protocol and system will be evaluated may help
establish how the code is developed, as well as identifying
hooks for monitoring particular processes.

A. Test System

Figure 6 illustrates a generic testbed for testing may aspects
of the SCF protocol. The systems consists of 12 SCF agents
and 16 links. Any or all of the links may be disconnected at
any given time. Even though the system is simple, some com-
plexity is necessary because the system must accommodate
testing of aggregation, deaggregation, and fragmentation with
multiple container flows of various sizes and priorities.

B. Test Requirements

The following are a list of SCF protocol test requirements.
This lists is likely incomplete, but at least provides a starting
point. The requirements are in no particular order of prece-
dence, but are numbered in order to aid in referencing for
discussion.

Test 1: While the SCF Protocol SHOULD be capable of
handling all environments, the implementation may
not However, the implementation SHOULD be tested
over the environment it is meant to operate.
• Rationale: Delays and disconnection times may be

specific to a given deployment and the implemen-
tation may be design for that particular deployment
environment.

• Rationale: Container sizes may be quite limited in
some deployments such as a sensor web or may
be quite large in other instances such as a remote
imaging sensor satellite.

TBD 14

Test 2: The implementation should be tested with traffic den-
sity and traffic patterns that are anticipated in the
particular deployment
• Rationale: Communications is rarely if ever ran-

dom. Testing with random data patterns can be
very misleading. For example, in a warfighter de-
ployment, there may be some background random
communications between peers. While the majority
of traffic may be from the edge to a concentration
point such a a command center.

Test 3: Although SCF routing protocols are not specified in
this document, if a SCF network deployment has
aspects of mobility, that mobility MUST be emulated
or implemented in the test network.
• Rationale: Failure to test a routing protocol de-

signed to handle a time-varying SCF topology will
likely result in misleading results.

Test 4: For all implementations - expert perhaps the simplest
of sensor webs - fragmentation, aggregation and deag-
gregation SHOULD be tested.
• Rationale: SCF environments, buy there very na-

ture, are unpredictable (with the perhaps the ex-
ception of very simple space-based networks). As
such, one should not assume that container flows
will not experience situations where fragmentation,
aggregation and deaggregation will result.

Test 5: • Rationale:
• Rationale:

XIII. CONCLUSION

The conclusion goes here.

ACKNOWLEDGEMENTS

Much work builds on lessons learned from the work per-
formed by the Internet Research Task Force (IRTF) DTN
Research Group.

Work on this document at NASA’s Glenn Research Center
was funded by the NASA Glenn Research Center Innovation
Funds.

REFERENCES

[1] S. Bradner, “Key words for use in RFCs to Indicate Requirement
Levels,” RFC 2119 (Best Current Practice), Internet Engineering Task
Force, Mar. 1997. [Online]. Available: http://www.ietf.org/rfc/rfc2119.txt

[2] J. Day, Patterns in network architecture: a return to fundamentals.
Prentice Hall, 2007.

[3] (December, 2013) Unix-to-unix copy. [Online]. Available: http:
//en.wikipedia.org/wiki/UUCP

[4] (December, 2013) Fidonet. [Online]. Available: http://www.fidonet.org/
[5] (December, 2013) Simple mail transfer protocol. [Online]. Available:

http://en.wikipedia.org/wiki/Simple Mail Transfer Protocol
[6] (December, 2013) Post office protocol. [Online]. Available: http:

//en.wikipedia.org/wiki/Post Office Protocol
[7] (December, 2013) Internet message access protocol. [Online]. Available:

http://en.wikipedia.org/wiki/Internet Message Access Protocol
[8] (December, 2013) Secure/multipurpose internet mail extensions.

[Online]. Available: http://en.wikipedia.org/wiki/S/MIME
[9] (December, 2013) Jms/openwire. [Online]. Available: http:

//en.wikipedia.org/wiki/Java Message Service

[10] (December, 2013) Advanced message queuing protocol. [Online].
Available: http://en.wikipedia.org/wiki/Advanced Message Queuing
Protocol

[11] (December, 2013) Streaming text oriented messaging protocol. [On-
line]. Available: http://en.wikipedia.org/wiki/Streaming Text Oriented
Messaging Protocol

[12] (December, 2013) Extensible messaging and presence protocol.
[Online]. Available: http://xmpp.org

[13] “Message queuing telemetry transport,” 2013 December. [Online].
Available: http://mqtt.org/wiki/

[14] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott,
K. Fall, and H. Weiss, “Delay-Tolerant Networking Architecture,” RFC
4838 (Informational), Internet Engineering Task Force, Apr. 2007.
[Online]. Available: http://www.ietf.org/rfc/rfc4838.txt

[15] K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050
(Experimental), Internet Engineering Task Force, Nov. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5050.txt

[16] (2013, December) Dtn research group. [Online]. Available: http:
//www.dtnrg.org/wiki/

[17] L. Wood, W. Ivancic, W. Eddy, D. Stewart, J. Northam, C. Jackson,
and A. da Silva Curiel, “Use of the delay-tolerant networking bundle
protocol from space,” in Proceedings of the 59th Astronautical Congress,
Glasgow. IAC, 2008.

[18] W. Ivancic, P. Paulsen, D. Stewart, W. Eddy, J. McKim, J. Taylor,
S. Lynch, J. Heberle, J. Northam, C. Jackson et al., “Large file
transfers from space using multiple ground terminals and delay-tolerant
networking,” in Global Telecommunications Conference (GLOBECOM
2010), 2010 IEEE. IEEE, 2010, pp. 1–6.

[19] J. Saltzer, “On the Naming and Binding of Network Destinations,” RFC
1498 (Informational), Internet Engineering Task Force, Aug. 1993.
[Online]. Available: http://www.ietf.org/rfc/rfc1498.txt

[20] J. Postel, “DoD standard Internet Protocol,” RFC 760, Internet
Engineering Task Force, Jan. 1980, obsoleted by RFC 791, updated by
RFC 777. [Online]. Available: http://www.ietf.org/rfc/rfc760.txt

William Ivancic Mr.Ivancic has over thirty years
experience in network and system engineering for
communication applications, communication net-
working research, state-of-the-art digital, analog and
RF hardware design and testing. He currently is a
senior research engineer at NASA?s Glenn Research
Center. His work areas include network centric
technologies for space, aeronautics and terrestrial
systems. He has lead research efforts to deploy
commercial-off-the-shelf (COTS) technology into
NASA missions. Of particular interest is large scale,

secure deployment of mobile networks including mobile-ip and mobile router
technology. Mr. Ivancic?s recent areas of research include: high-speed reli-
able data transport protocols, store-carry-and-forward protocols, and adaptive
dynamic networking including cognitive networking. He has recently become
involve with developing the detailed communication architecture for advanced
extravehicular mobile units (a.k.a. spacesuits).

Mr. Ivancic is also principle of Syzygy Engineering, a small consulting
company specializing in communications systems and networking as well as
advanced technology risk assessment. Mr. Ivancic is currently performing
research and development on Identity-based security and key and policy
management and distribution for tactical networks - particularly mobile
networks.

http://www.ietf.org/rfc/rfc2119.txt
http://en.wikipedia.org/wiki/UUCP
http://en.wikipedia.org/wiki/UUCP
http://www.fidonet.org/
http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://en.wikipedia.org/wiki/Post_Office_Protocol
http://en.wikipedia.org/wiki/Post_Office_Protocol
http://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
http://en.wikipedia.org/wiki/S/MIME
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://en.wikipedia.org/wiki/Advanced_Message_Queuing_Protocol
http://en.wikipedia.org/wiki/Streaming_Text_Oriented_Messaging_Protocol
http://en.wikipedia.org/wiki/Streaming_Text_Oriented_Messaging_Protocol
http://xmpp.org
http://mqtt.org/wiki/
http://www.ietf.org/rfc/rfc4838.txt
http://www.ietf.org/rfc/rfc5050.txt
http://www.dtnrg.org/wiki/
http://www.dtnrg.org/wiki/
http://www.ietf.org/rfc/rfc1498.txt
http://www.ietf.org/rfc/rfc760.txt

TBD 15

Wes Eddy Wesley Eddy is Chief Technologist at
MTI Systems, where he supports contracts with
NASA and other agencies. He has an MSc degree
in Computer Science from Ohio University, where
he studied modifications to TCP congestion control.
For NASA, he has worked on a number of space
and aeronautics research projects, including the first
demonstration DTN in space onboard the UK-DMC
satellite and several studies involving space-based
networking and protocol enhancements needed for
the space environment. He has also worked as a

systems engineer on NASA teams including the SCaN-Constellation Integra-
tion Project (SCIP), the Space Network (SN) Ground Segment Sustainment
(SGSS) project, the Altair lunar lander, and the SCaN Testbed. He is active
in the Internet Engineering Task Force (IETF), where he co-chairs the Active
Queue Management and Packet Scheduling (AQM) working group. In the past,
he was an IETF Area Director and also co-chaired the IETF TCPM working
group and the Internet Congestion Control Research Group (ICCRG).

Alan Hylton Alan Hylton is a communications
researcher at NASA GRC specializing in Delay
Tolerant Networking (DTN) and deep-space optical
communications. He is the technical lead for DTN
at GRC, and is the networking lead and test-bed lead
on the Integrated Radio Optical Communications
(iROC) project. At NASA, his beginnings were in
the biosciences and technology group. His back-
ground is in pure mathematics.

Dennis Iannicca Mr. Iannicca is a computer engi-
neer at NASA Glenn Research Center. He is cur-
rently researching delay and disruption tolerant net-
working technology to integrate into terrestrial and
space communications systems. As part of NASA’s
Integrated Systems Research Program, he is also
conducting communication security research to pro-
vide recommendations to the FAA and industry on
how to securely integrate civil Unmanned Aircraft
Systems (UAS) in the National Airspace System
(NAS).

Joseph Ishac Joseph Ishac is a computer engineer
for NASA Glenn Research Center in Cleveland,
Ohio. He has earned both his bachelor’s and master’s
degrees in computer engineering from Case Western
Reserve University, where he studied the impact of
transparent network proxies. He is actively involved
the advancement and development of networking
protocols, using both simulation environments and
experimental testbeds. His current work areas in-
clude advancing satellite data link technology, in-
cluding use of Low Density Parity Check Codes

(LDPC). He is also working on the integration of Unmanned Aerial Systems
(UAS) into commercial airspace. Joseph research interests lie in the field of
computer networks and architectures, IPv6, security, and transport protocols.

LIST OF ACRONYMS

AMQP - Advanced Message Queuing Protocol
API - Application Program Interface
CPU - Central Processing Unit
DARPA - Defense Advanced Research Project Agency
DNS - Domain Name System
DoS - Denial of Service
DTN - Delay/Disruption/Disconnection Tolerant

Networking
IMAP - Internet Message Access Protocol
ION - Interplanetary Overlay Network
IP - Internet Protocol
IPv6 - Internet Protocol version 6
IRTF - Internet Research Task Force
JMS - JAVA Message Service
LEO - Low-Earth Orbit
MANET - Mobile Ad Hoc Network
MQTT - Message Queuing Telemetry Transport
PKI - Public Key Infrastructure
POP - Post Office Protocol
QoS - Quality of Service
RFC - Request For Comment
SCF - Store, Carry and Forward
SF - Store and Forward
S/MIME - Secure/Multipurpose Internet Mail Extensions
SMTP - Simple Mail Transfer Protocol
STOMP - Streaming Text Oriented Messaging Protocol
TCP - Transmission Control Protocol
UUCP - Unix-to-Unix Copy
WNAN - Wireless Network after Next
XMPP - Extensible Messaging and Presence Protocol

	Terminology
	Introduction and Background
	Store and Forward Systems

	Generic Architecture
	Operational Considerations
	Use Cases and Deployment Scenarios
	Data Mule
	Data Gathering
	Traveling the Beaten Path
	Rapid Disruption
	Dismounted Soldier
	Low Earth Orbiting Sensor Satellite

	Consideration of Existing Technologies
	Characteristics of Information
	Network Management
	Lessons Learned Summary
	Security Considerations
	Requirements and Expectations
	Design Considerations
	Protocol Requirements
	Agent Requirements and Expectations
	Application Requirements and Expectations

	Testing Store, Carry and Forward Systems and Protocols
	Test System
	Test Requirements

	Conclusion
	References
	Biographies
	William Ivancic
	Wes Eddy
	Alan Hylton
	Dennis Iannicca
	Joseph Ishac

